
0 7 4 0 - 7 4 5 9 / 2 1 © 2 0 2 1 I E E E SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE 7

HAVE YOU EVER tried to retrieve
that forgotten key code for your suit-
case? After one year without trav-
eling, many of us found themselves
having forgotten the combination
and manually trying all permuta-
tions. The same situation, but more
complex, would be to systematically
try identifying that forgotten access
code for an online app that you had
not used for a while. Cyberattack-
ers are doing exactly this, of course,
at high speed and with increasing
computing performance. The recom-
mended security key length is thus
getting longer by the year. Yet, the
stepwise process to achieve this is
tedious or consumes lots of comput-
ing power. Now imagine that all of
these possible states could be tried in

a single step. This would be good for
your own number lock, but frighten-
ing for our security infrastructure.

The promise of quantum com-
puting is to vastly accelerate such
complex algorithms.1 Today, even su-
percomputers fail on high algorithmic
complexity because many algorithms
still work in sequences which build
on results of a previous step. Of course,
they use massively parallel hardware
and algorithms, but networking im-
poses limits as does the memory
needed to hold the myriad combina-
tions of real-world problems.

Quantum computing has left the
research domain and is ready to use
in industry practice. It will rapidly
advance industry applications in
fields such as data science, pattern
recognition, and cybersecurity.1–4

Yet the actual software development
for quantum computing is hampered

by a lack of appropriate methods and
insufficiently scalable technology.2

Quantum Computing
Quantum computers use atomic-scale
effects, such as electron spin, as under-
lying information.1 Quantum comput-
ing uses what are called quantum bits
or qubits: bits that are held in super-
position and use quantum principles
to complete calculations. A binary
digit is always in one of two definite
states, that is, either zero or one. Qu-
bits are in a superposition of these
classic binary states of zero and one.

Superposition is the ability of qu-
bits to be in more than one physi-
cal state at a time, which allows us
to parallelize combinations. Multiple
qubits can also become entangled.
If you measure the state of one qu-
bit entangled with another qubit,
the outcome of measuring the other

Digital Object Identifier 10.1109/MS.2021.3087755
Date of current version: 20 August 2021

Quantum Computing
Jose Luis Hevia, Guido Peterssen, Christof Ebert, and Mario Piattini

Editor: Christof Ebert
Vector Consulting Services
christof.ebert@vector.com

SOFTWARE
TECHNOLOGY

From the Editor

Quantum computing has become a reality. Quantum computers are available to every-

body via cloud service or simulation. Toolkits are available that invite practitioners to

start their own quantum software projects and thus get used to this novel technology.

In this article we evaluate technologies to help developers to start their own quantum

software business. Practical guidance is provided from our own quantum technology

projects. I look forward to hearing from you about this column and the technologies that

matter most for your work.—Christof Ebert

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on September 09,2021 at 10:27:16 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE TECHNOLOGY

8 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

qubit is correlated in some way with
the first, even if the two qubits are far
apart. Superposition and entangle-
ment are used together for quantum

computation. Yet these effects also
create practical challenges with real
quantum computers: they require so-
phisticated lab environments; also,
the information might decay when
the state of the system is captured.

How do we deduct the result from
these superimposed states? Many
quantum algorithms first create
superpositions of an exponentially

large number of logical states. Inter-
ference is used in that the incorrect
answers of the specific problem de-
structively interfere and no longer

appear in the final output, leaving be-
hind only the correct answer.

From an algorithmic point of
view, quantum computing can solve
problems of higher complexity than
classical computing—faster and also
with cost and energy savings. The
first quantum computers were built
in the late 1990s. For practical usage,
we distinguish quantum simulators,

in which the quantum algorithm
is simulated on classical hardware
(CPUs), and real quantum comput-
ers, with quantum processing units
(QPUs), in which qubits are built us-
ing a wide variety of technologies:
ion-trap, superconducting, and pho-
tonic methods, among others.1,4,5

Within quantum computers we
find mainly two categories (Fig-
ure 1): quantum annealing comput-
ers, such as the D-Wave computers
(suitable for running optimization
problems since finding the largest
or smallest value of an indicator can
translate into minimizing the energy
of a system), or gate-based com-
puters, such as those from Google,
IBM, Rigetti, IonQ, and Honey-
well.5 All of this strongly affects the
way in which applications are devel-
oped. Indeed, there are also two ap-
proaches: those based on building
binary quadratic models for solv-
ing a problem or those based on the

Quantum Software Platforms
Compilation and Optimization, Access to Hardware

Quantum Hardware Interface
Cloud Services or Direct Interfaces

CPU

Physical Bit
Physical Qubit

QPU

Ion-Trap, Superconducting, Photonic,
and Other Methods

Annealing

Binary Quadratic Models Quantum Circuits

Quantum Applications

Quantum Algorithms

Quantum Compilation and Mapping
Compilation and Optimization, Access to Hardware

Quantum Hardware Platform

Target Provisioning

Quantum Software Platform

Quantum Software Application

Gate Based

FIGURE 1. The quantum software and hardware stack.

Actual software development for
quantum computing is hampered by
a lack of appropriate methods and
insufficiently scalable technology.

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on September 09,2021 at 10:27:16 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE TECHNOLOGY

SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE 9

construction of quantum circuits
based on gates.

Today quantum hardware vendors
such as IBM, Rigetti, and Google de-
liver some 100 qubits on a laboratory
scale.4,5 This is impressive and dem-
onstrates how fast the technology is
evolving, but it is not yet sufficient
to run actual software applications.
Therefore, the quantum applications
that we envisage today are separating
the actual hardware stack from the
software tier (Figure 1).

We expect that quantum comput-
ers will scale up at a pace like that
of Moore’s law. For the short term, a
quantum network accessible by cloud
services could show results from a
software perspective. By connecting
individual quantum devices, a quan-
tum supercomputer could be created.
A bigger step forward is a quantum
network based on entangled qubits
for fast information exchange. Cy-
bersecurity is an obvious application
domain of such a network to facilitate
quantum key distribution with a cryp-
tography protocol relying on inter-
linked quantum particles.

Quantum Computing
Applications
Applications of quantum computing
are manifold. Because of the extreme
parallelism of quantum algorithms,
some massive parallel challenges,
such as data science and pattern
recognition, can be accelerated by
quantum computing.

Examples include, for example,
identifying the optimal route of a de-
livery car or fleet of trucks to save on
time and fuel costs. Or an investment
company may need to balance its
portfolio risk with numerous possible
combinations of shares with different
individual performances and related
cluster risks. Pharmaceutical research-
ers need to simulate molecules to better

understand drug interactions, even if
they do it using only known constraints
and reported deficiencies. The latter is
our case study in “QHealth.”

On the dark side, massive parallel
algorithms will also facilitate hack-
ing any current cryptographic key
with much less effort than is currently
assumed. Shor’s algorithm can fac-
tor large prime numbers down into
two smaller ones.6 This is a very use-
ful property for breaking encryption
since the Rivest–Shamir–Adleman
(RSA) system of encryption depends

on factoring large prime numbers.
Already today, major cybersecurity al-
gorithms are anticipating such quan-
tum hacking and vastly enhancing the
key length. Postquantum cryptography
has started to be researched with en-
cryption techniques that would oper-
ate and not be broken even with much
larger quantum computers. Most of
the encryption systems in modern
cryptocurrencies are built on elliptic
curve cryptography rather than RSA
because elliptic curves are harder to
crack than RSA—at least by classical
computers. Current blockchain-based
e-currencies thus use signatures that
require the Elliptic Curve Digital Sig-
nature Algorithm (ECDSA). However,
quantum computers seem to challenge
ECDSA. With enough qubits, Grover’s

algorithm can break elliptic curve cryp-
tography even more easily than you
might break RSA.6 As Grover’s al-
gorithm also accelerates mining, one
further application is the evolution
in bitcoin mining from GPUs, field-
programmable gate arrays, and ap-
plication-specified integrated circuits
toward quantum computers.

Novel quantum computation pro-
tocols are currently developed toward
enhanced security. In such protocols,
the client will encrypt its data so that
the host or cloud computer cannot

learn anything about them yet can
still perform the calculation. After
the computation, the client will then
decrypt the data again to get the real
results of the calculation. Yet another
application is a performance boost
in network algorithms by using en-
tangled qubits, which allows them to
simultaneously calculate independent
of their distance apart.1,7 The latter
field of study is not yet mature, with
distances only in the meter range and
the entangling of only a few qubits,
but the effects would be overwhelm-
ing if future networking no longer
needed physical networks.

Given our analogy with Moore’s
law, large enough quantum com-
puters will appear within a few
years. Shor’s algorithm works with

Because of the extreme parallelism
of quantum algorithms, some
massive parallel challenges, such
as data science and pattern
recognition, can be accelerated
by quantum computing.

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on September 09,2021 at 10:27:16 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE TECHNOLOGY

10 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

a quantum computer of fer ing
10 –100k qubits. Using Grover’s
algorithm for database searching
and hacking ECDSA will require
some 100k qubits. All this assumes
steady growth and the mastering of
quantum-specific challenges, such
as the noise and error rates caused
by the inherent quantum effect that
observing a superimposed quantum

state will influence its result, as de-
scribed by the Schrödinger’s cat
thought experiment. Given the lon-
gevity of embedded computing and
the exponential growth rate, now is
the time to prepare our software and
IT systems for the impacts of quan-
tum computing such as postquan-
tum cryptography.

Quantum Software
Development
To utilize quantum computing, quan-
tum hardware vendors offer full stacks
for the development of quantum soft-
ware. As those are typically hardware
specific, there are also third-party sup-
pliers that provide platforms that claim
to be hardware agnostic.

The quantum software platforms
are portrayed in red in Figure 1.
They offer the following functions:

• They provide users access to
quantum computers to perform
quantum computations via cloud
services.

• They provide abstractions be-
tween the underlying hardware
and the actual software appli-
cations. This includes libraries
to facilitate using the quantum
computer either in simulation or
as actual hardware.

• They offer development kits
and computational platforms to
ramp up end-user proficiency.

• They support software engineers
in developing and testing their
quantum algorithms.

• They enhance the reliability and
performance of physical quantum
computers. An inherent weakness
of any quantum computing sys-
tem is the errors in the transition
from digital to quantum states.
Random errors can occur due to
the currently used hardware. Er-
ror-correcting software increases
the stability and reliability of
quantum computers.

Table 1 provides an overview of
the currently available quantum soft-
ware technologies. Toolkits from
hardware suppliers are typically spe-
cific to their underlying hardware.
Manufacturers provide both local
simulators as well as cloud resources
to access real machines.

Building and even using a quantum
computer involves a high investment
because of the underlying quantum
hardware stack. Since actual quantum

computing hardware is much too ex-
pensive and complex, most available
software platforms are based on cloud
services. However, there are very few
manufacturers capable of provid-
ing quantum services close to what is
currently needed in terms of software
business. Also, each manufacturer
brings its own solutions, architectures,
and specific hardware–software de-
pendencies. To date there are no de
facto standards for building an ap-
propriate quantum software stack.
In Figure 1 we have attempted to at
least provide some abstraction levels
between the different functional tiers.

Although there are many algo-
rithms for quantum computers, it re-
quires a good understanding of the
underlying theory and technology to
determine which algorithm can be
used in a certain situation. Even if a
suitable algorithm is transferred from
traditional data science, its conversion
into an executable program requires
competence in the environment of the
respective quantum computer, which
data scientists and software engineers
typically do not have.

Microsoft, IBM, and Google have
their own respective environments,
namely, Q#, Qiskit, and Cirq, which
use the Python programming lan-
guage. Microsoft’s Quantum Develop-
ment Kit (QDK) delivers user-friendly
code libraries, a debugger, and a re-
source estimator to assess how many
qubits an algorithm will require. Each
manufacturer provides its own access
rules to the environments and its ver-
sions of approved languages. IBM of-
fers access to a five-qubit machine
free of charge. More powerful ma-
chines are available in its Quantum
Network. Microsoft offers access to
other companies’ quantum computers
through its Azure Quantum platform.

Two distinct development tech-
nologies are visible: quantum gates

Building and even using a quantum
computer involves a high investment
because of the underlying quantum
hardware stack.

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on September 09,2021 at 10:27:16 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE TECHNOLOGY

 SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE 11

QHEALTH

Quantum technology can be applied to multiple questions where data science
meets algorithmic complexity. The aim of QHealth is to improve the quality of
life of older adults. It correlates genetic and other variables related to a per-
son’s health history. The health history is analyzed as a function of the patient’s
drug consumption history, the reactions the older adult has experienced, and
his/her physiological and genetic limitations.

The challenge in such an analysis involves the complexity of genetic pre-
condition on one hand and also the number of drugs being used as part of the
normal treatments of elderly persons. Even when looking only to the impacts of
medication, there are multiple interactions and contraindications. For each ac-
tive ingredient, in addition to variables such as genetic biomarkers, haplotypes,
phenotypes, and so on, we must consider specific personal variables about the
patient, such as sex, age, weight, blood pressure, recent drug history, and spe-
cific health impacts, among others. The underlying data analytics soon become
intractable with classical computing.

QHealth builds a hybrid quantum system combining health-care applica-
tions and data analytics with quantum computing. Quantum technologies car-
ry out optimizations and simulations whose realization in classical hardware
is not possible in acceptable timescales. This hybrid system, in combination
with classical health applications, will give its outputs to medical professionals
involved in prescribing drugs to elderly adults. In a further extension, we also
envisage application in the case of younger persons with difficult drug treat-
ment and health conditions, trying to reduce the negative impacts of drugs
due to their correlation and mutual side-effects when used in combination.
Using the case histories and the socioeconomic and genetic variables of the
persons being analyzed, we can then also make recommendations for suitable
drug treatments and provide risk assessment before they are prescribed.

Using quantum technology for health care will vastly increase the possi-
bilities to assess and optimize medical treatment applications, especially for
persons who need multiple medications for coexisting illnesses. The proposed
approach that we currently industrialize not only improves life and medical
treatment but also has a financial impact because it will optimize the invest-
ments that health systems make in financing drugs and address the adverse
effects that drugs often generate.

QHealth is founded by the Center for the Development of Industrial Technol-
ogy (CDTI) of the Ministry of Science and Innovation of Spain and the European
Regional Development Fund, in the 2020 CDTI Missions Program, with a total
budget of several million euros. It involves a multidisciplinary team of research-
ers and technologists from the aQuantum, Gloin, and Madrija companies and
the University Institute of Biosanitary Research of Extremadura in collaboration
with the Pharmacogenetics and Personalized Medicine Unit, the University of
Extremadura, and the University of Castilla-La Mancha.

and quantum annealing. Most ven-
dors offer an integrated development
environment, but they are intended
more as an environment for experi-
ment and executing independent
quantum algorithms/circuits than a
business development environment.
Most of the toolkits also include
some quantum software optimiza-
tion features, but usually modules
are unconnected elements in a tradi-
tional or online file system, such as
GitHub, or http-accessible files.

Several third-party tools can be
connected to these toolkits, and
high-level libraries are included.
These libraries are sets of extensions
to the programming language that
encapsulate the manufacturer’s spe-
cific components in a high-level unit:
data normalizations, circuit classes,
gates, calculation functions and utili-
ties, error control, and many more.
They are included because of the
R&D and large investments of each
manufacturer in this technology. In
addition to these valuable resources,
suppliers add through the Internet
extensive repositories of information,
code, algorithms, training materi-
als, and a long list of other types of
resources that make access to their
quantum technologies much easier.

Third-party software platforms, al-
though they bring quantum resources
closer to the business world, do not yet
provide the necessary core elements in
the lifecycle and architecture of hy-
brid systems. While their capabilities
and tools are good, it is necessary to
invest time and effort in investigating
how to fit them into a complete rigor-
ous software lifecycle, to improve the
productivity and ensure quality quan-
tum software development. These
development environments are hard-
ware agnostic as they are intended to
serve as development tools for vari-
ous end-user environments. They are

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on September 09,2021 at 10:27:16 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE TECHNOLOGY

12 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

evolving as these kinds of toolkits
try to create, in most cases, an in-
tegrated development environment.
Only a few of them provide optimi-
zation facilities and out-of-the-box
(OOTB) functionality.

In our evaluation (Table 1) we re-
flect these different attributes and
functionalities. OOTB functionality
reflects whether the toolkit is stand-
alone or whether it needs to install
third-party software to be able to
produce software professionally.

Regarding service integration, all of
the platforms provide an application
programming interface (API)—in
the case of quantum gate-based com-
puters for executing quantum cir-
cuits as a service and in the case of
quantum annealing ones for execut-
ing solvers as a service.

Challenges in Using
Quantum Software
Designing software for quantum
computers requires additional skills

compared to creating software for
traditional computers. To benefit
from the fast pace of quantum hard-
ware evolution, it is urgent that we
mature the technology and meth-
ods for quantum software. It is not
enough to stress the importance of
quantum software;1 we must go a
step further and raise the awareness
of quantum software engineering
(QSE).5,7 Distinguishing different
layers of complex systems by simula-
tion and networked smaller elements

Table 1. Quantum software development platforms.

Product
Functionality D-Wave Leap–Ocean

Fujitsu Quantum-
Inspired Services Google Cirq

IBM Quantum
Experience and
Qiskit

Microsoft Azure
QDK and Q# Rigetti Forest

Xanadu–
Strawberry Fields
and Penny Lane Orquestra

Quantum
Inspire QuantumPath

Quantum
Programming
Studio

Strangeworks
QC

URL https://www.dwavesys
.com/take-leap

https://www.fujitsu
.com/es/services/
business-services/
digital-annealer

https://quantumai
.google/cirq

https://quantum
-computing.ibm
.com

https://azure
.microsoft.com

https://www.rigetti.com/
quantum-computing/

https://
strawberryfields
.ai/

https://www
.zapatacomputing
.com/orquestra/

https://www
.quantum
-inspire.com/

https://www
.quantumpath
.es/

https://quantum
-circuit.com/

https://
strangeworks
.com/

Hardware
agnosticity

NO Only D-WAVE NO
Only Fujitsu

NO
Only Google

NO
Only IBM

YES NO
Only RIGETTI

Partially
IBM

YES, but few
integrated
providers

YES, mainly
connected with
IBM Quantum
Experience.

YES NO. The circuit
is only directly
exportable to
Rigetti´s hardware

YES

Programming
language

Python Platform-specific
language

Python Python, platform-
specific language

Python QASM
Platform-specific
language

Q# Python Python QUIL
Platform-specific
language

Python Python Python
cQASM

Python
Q#

Multiple
languages

Python

Integrated
development
environment

LEAP for executing
quantum algorithms

None. It depends on
Jupyter and Python

None. It depends on
Jupyter and Python

QEXPERIENCE for
executing quantum
algorithms

Visual Studio Code FOREST for executing
quantum algorithms

None
It depends on
Jupyter and
Python

NO. It depends
on Jupyter and
Python

Quantum
Experience

YES YES YES

Optimization YES NO YES YES NO YES YES NO YES YES NO NO

Modularity YES if Python is used YES if Python is used YES if Python is used YES YES YES YES if Python is
used

YES, if Python
is used

YES, if Python
is used

YES NO YES

Out of the box
functions

NO NO NO NO YES NO NO NO NO YES NO YES

Service
integration

API for executing solvers
as a service

API for executing
solvers as a service

API for executing
circuits as a service

API for executing
circuits as a
service

API for executing
circuits as a
service

API for executing
circuits as a service

API for executing
circuits as a
service

NO API for
executing
circuits as a
service

API for
executing
circuits as a
service

PARTIAL PARTIAL

Third-party
software

Jupyter Strangeworks
QuantumPath

Jupyter
Strangeworks
QuantumPath

Jupyter
Strangeworks
Zapata Orquestra
QuantumPath

Jupyter
Strangeworks
Zapata Orquestra
QuantumPath

Jupyter
Strangeworks
Zapata Orquestra
QuantumPath

Jupyter
Strangeworks
Zapata Orquestra
QuantumPath

Jupyter
Strangeworks

Jupyter Jupyter
QuantumPath

Jupyter
Visual Studio
Java

NO NO

High-level
libraries

YES YES YES YES YES YES YES YES YES YES YES YES

URL: uniform resource locator; QDK: Quantum Development Kit; OOTB: out of the box; API: application programming interface.

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on September 09,2021 at 10:27:16 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE TECHNOLOGY

 SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE 13

will allow us to target innovation in
parallel for the underlying hardware
and software.3

Quantum software with industry-
scale performance, robustness, and
reliability will mean a next level in
software technology. We strongly be-
lieve that quantum computing could
also bring a new “golden age” to
software engineering.8 But it is nec-
essary to address all the challenges
and opportunities faced in QSE7 and
adapt or create the necessary models,

standards, or methods to help us in
the creation of new quantum systems
and the migration of current ones.9
One step in such advances is having
the right development toolkits and
knowing their characteristics.

Quantum software platforms and
toolkits are difficult for practical in-
dustry usage. They do not bring much
context support to the quantum algo-
rithm generation, assuming that the
quantum software engineer will know
how to incorporate each product to its

corresponding platform. In the mean-
time, collections of quantum software
algorithms are available, such as the
quite exhaustive quantum algorithm
zoo.6 So, to be able to work with the
different quantum hardware, it is nec-
essary to be knowledgeable about the
requirements and libraries of each one
of them.

Where Do We Go From Here?
Software and system technology in-
novation will further evolve at a fast

Table 1. Quantum software development platforms.

Product
Functionality D-Wave Leap–Ocean

Fujitsu Quantum-
Inspired Services Google Cirq

IBM Quantum
Experience and
Qiskit

Microsoft Azure
QDK and Q# Rigetti Forest

Xanadu–
Strawberry Fields
and Penny Lane Orquestra

Quantum
Inspire QuantumPath

Quantum
Programming
Studio

Strangeworks
QC

URL https://www.dwavesys
.com/take-leap

https://www.fujitsu
.com/es/services/
business-services/
digital-annealer

https://quantumai
.google/cirq

https://quantum
-computing.ibm
.com

https://azure
.microsoft.com

https://www.rigetti.com/
quantum-computing/

https://
strawberryfields
.ai/

https://www
.zapatacomputing
.com/orquestra/

https://www
.quantum
-inspire.com/

https://www
.quantumpath
.es/

https://quantum
-circuit.com/

https://
strangeworks
.com/

Hardware
agnosticity

NO Only D-WAVE NO
Only Fujitsu

NO
Only Google

NO
Only IBM

YES NO
Only RIGETTI

Partially
IBM

YES, but few
integrated
providers

YES, mainly
connected with
IBM Quantum
Experience.

YES NO. The circuit
is only directly
exportable to
Rigetti´s hardware

YES

Programming
language

Python Platform-specific
language

Python Python, platform-
specific language

Python QASM
Platform-specific
language

Q# Python Python QUIL
Platform-specific
language

Python Python Python
cQASM

Python
Q#

Multiple
languages

Python

Integrated
development
environment

LEAP for executing
quantum algorithms

None. It depends on
Jupyter and Python

None. It depends on
Jupyter and Python

QEXPERIENCE for
executing quantum
algorithms

Visual Studio Code FOREST for executing
quantum algorithms

None
It depends on
Jupyter and
Python

NO. It depends
on Jupyter and
Python

Quantum
Experience

YES YES YES

Optimization YES NO YES YES NO YES YES NO YES YES NO NO

Modularity YES if Python is used YES if Python is used YES if Python is used YES YES YES YES if Python is
used

YES, if Python
is used

YES, if Python
is used

YES NO YES

Out of the box
functions

NO NO NO NO YES NO NO NO NO YES NO YES

Service
integration

API for executing solvers
as a service

API for executing
solvers as a service

API for executing
circuits as a service

API for executing
circuits as a
service

API for executing
circuits as a
service

API for executing
circuits as a service

API for executing
circuits as a
service

NO API for
executing
circuits as a
service

API for
executing
circuits as a
service

PARTIAL PARTIAL

Third-party
software

Jupyter Strangeworks
QuantumPath

Jupyter
Strangeworks
QuantumPath

Jupyter
Strangeworks
Zapata Orquestra
QuantumPath

Jupyter
Strangeworks
Zapata Orquestra
QuantumPath

Jupyter
Strangeworks
Zapata Orquestra
QuantumPath

Jupyter
Strangeworks
Zapata Orquestra
QuantumPath

Jupyter
Strangeworks

Jupyter Jupyter
QuantumPath

Jupyter
Visual Studio
Java

NO NO

High-level
libraries

YES YES YES YES YES YES YES YES YES YES YES YES

URL: uniform resource locator; QDK: Quantum Development Kit; OOTB: out of the box; API: application programming interface.

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on September 09,2021 at 10:27:16 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE TECHNOLOGY

14 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

pace in fields such as nanotechnol-
ogy, biotechnology, genomics, and
quantum computing.3 Today we can
already use quantum computers and
profit from their huge computation
capacity to solve problems consid-
ered very difficult or unaffordable
for “classic” computing. Quantum
computing speeds up the process of
solving algorithms that require mas-
sive parallel computations and so al-
lows us to better simulate nature. All
of this brings very new, disruptive,
and potentially useful innovations.

Our focus here is on quantum
software platforms to get started in

industry-scale software engineer-
ing. Quantum hardware suppliers
have provided software technologies
for their respective computers and
quantum effect simulators. Results
look promising as there are several
platforms available which allow a
smooth learning curve.

The state of quantum technology is
improving at an accelerating rate. To
produce useful and trusted quantum
software, applications still must solve
relevant issues, such as the resolution
of qubits and the control of their er-
rors. The results of quantum ma-
chines create new types of errors, and

we must learn to interpret the results.
However, each vendor provides the
results in different ways, which again
leads to the need to rely on a particu-
lar vendor or to build a homogenized
channel to consolidate the results.

The importance of professional
software engineering for quantum
computing has been neglected so
far.7–9 New software engineering
methods must be conceived based
on experiences from software engi-
neering for data science and machine
learning.3,9 They must be enhanced
to manage specific quantum chal-
lenges, such as uncertainties, noise,
and interpretation. Along those
lines, development tools are not yet
suitable from a business point of
view. The resources resulting from
the use of vendor software develop-
ment kits are individual elements
that are not yet incorporated into en-
terprise development resources.

Software technology and devel-
opment methodologies need to ad-
vance to make these assets part of a
complete quantum software project
lifecycle. The increasing awareness
of quantum computing applications
demands the production of quality
quantum software. Without proper
software technology platforms and
suitable software engineering meth-
ods, quantum software remains a
mere research topic. Especially in
trusted environments, such as med-
icine, and others where defects will
have severe consequences, quantum
software must prove the same high-
quality standards that we demand
from any other software.

Physics Nobel laureate and
quantum pioneer Niels Bohr
once remarked: “Those

who are not shocked when they first
come across quantum theory cannot

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JOSE LUIS HEVIA is the quantum chief technology officer and the

software architect and software solutions IT manager at Alhambra

IT, Madrid, 28037, Spain. Further information about him can be

found at https://www.aquantum.es. Contact him at jluis.hevia@

alhambrait.com.

GUIDO PETERSSEN is the quantum chief operating officer

and the director of R&D and software solutions at Alhambra IT,

Madrid, 28037, Spain. Further information about him can be found

at https://www.aquantum.es. Contact him at guido.peterssen@

alhambrait.com.

CHRISTOF EBERT is the managing director of Vector Consulting

Services, Stuttgart, 70499, Germany. He serves on the editorial board

of IEEE Software and is a Senior Member of IEEE. Further informa-

tion about him can be found at https://twitter.com/christofebert.

Contact him at christof.ebert@vector.com.

MARIO PIATTINI is the quantum chief research officer and leader of

the Alarcos Research Group, University of Castilla-La Mancha, Ciudad

Real, 13001, Spain. Further information about him can be found at

https://www.uclm.es. Contact him at mario.piattini@uclm.es.

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on September 09,2021 at 10:27:16 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE TECHNOLOGY

 SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE 15

possibly have understood it.” His
observation still applies today, espe-
cially in using quantum effects to ac-
tually produce software. There is still
a way to go to deliver quality quan-
tum applications. Yet now is the time
to start. To scale from research to in-
dustry, quantum software must adopt
sound software engineering methods
for the development of quantum soft-
ware—and enhance them as we once
did when scaling agile development.
Good enough may be sufficient for
today, but it is certainly not for to-
morrow.

References
 1. J. D. Hidary, Quantum Computing:

An Applied Approach. New York:

Springer, 2019.

 2. Quantum Software Mani-

festo. https://www.qusoft.org/

quantum-software-manifesto

(accessed June 20, 2021).

 3. C. Ebert and B. Tavernier, “Technol-

ogy trends: Strategies for the new

normal,” IEEE Softw., vol. 38, no.

2, pp. 7–14, Mar. 2021. doi: 10.1109/

MS.2020.3043407.

 4. European Quantum Flagship, “Strate-

gic research agenda.” https://digital

-strategy.ec.europa.eu/en/library/

quantum-flagship-major-boost

-european-quantum-research

(accessed June 20, 2021).

 5. “Quantum devices and simulators.”

IBM. https://www.research

.ibm.com/ibm-q/technology/

devices/#ibmq-20-tokyo (accessed

June 20, 2021).

 6. “Algebraic and number theoretic

algorithms.” Quantum Algorithm

Zoo. https://quantumalgorithmzoo

.org/ (accessed June 5, 2021).

 7. J. Zhao, “Quantum software engineer-

ing: Landscapes and horizons,” July 14,

2020, arXiv:2007.07047v1 [cs.SE].

 8. M. Piattini, G. Peterssen, and R.

Pérez-Castillo, “Quantum com-

puting: A new software engineer-

ing golden age,” ACM SIGSOFT

Softw. Eng. Newslett., vol. 45,

no. 3, pp. 12–14, June 2020. doi:

10.1145/3402127.3402131.

 9. M. Piattini, M. Serrano, R. Pérez-

Castillo, G. Peterssen, and J. L. Hevia,

“Towards a quantum software engi-

neering,” IT Prof., vol. 23, no. 1, pp.

62–66, Jan.-Feb. 2021. doi: 10.1109/

MITP.2020.3019522.

Digital Object Identifier 10.1109/MS.2021.3099661

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on September 09,2021 at 10:27:16 UTC from IEEE Xplore. Restrictions apply.

