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HAVE YOU EVER tried to retrieve 
that forgotten key code for your suit-
case? After one year without trav-
eling, many of us found themselves 
having forgotten the combination 
and manually trying all permuta-
tions. The same situation, but more 
complex, would be to systematically 
try identifying that forgotten access 
code for an online app that you had 
not used for a while. Cyberattack-
ers are doing exactly this, of course, 
at high speed and with increasing 
computing performance. The recom-
mended security key length is thus 
getting longer by the year. Yet, the 
stepwise process to achieve this is  
tedious or consumes lots of comput-
ing power. Now imagine that all of 
these possible states could be tried in 

a single step. This would be good for 
your own number lock, but frighten-
ing for our security infrastructure.

The promise of quantum com-
puting is to vastly accelerate such 
complex algorithms.1 Today, even su-
percomputers fail on high algorithmic 
complexity because many algorithms 
still work in sequences which build 
on results of a previous step. Of course, 
they use massively parallel hardware 
and algorithms, but networking im-
poses limits as does the memory 
needed to hold the myriad combina-
tions of real-world problems.

Quantum computing has left the 
research domain and is ready to use 
in industry practice. It will rapidly 
advance industry applications in 
fields such as data science, pattern 
recognition, and cybersecurity.1–4

Yet the actual software development 
for quantum computing is hampered 

by a lack of appropriate methods and 
insufficiently scalable technology.2

Quantum Computing
Quantum computers use atomic-scale 
effects, such as electron spin, as under-
lying information.1 Quantum comput-
ing uses what are called quantum bits
or qubits: bits that are held in super-
position and use quantum principles 
to complete calculations. A binary 
digit is always in one of two definite 
states, that is, either zero or one. Qu-
bits are in a superposition of these 
classic binary states of zero and one.

Superposition is the ability of qu-
bits to be in more than one physi-
cal state at a time, which allows us 
to parallelize combinations. Multiple 
qubits can also become entangled. 
If you measure the state of one qu-
bit entangled with another qubit, 
the outcome of measuring the other 
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From the Editor

Quantum computing has become a reality. Quantum computers are available to every-

body via cloud service or simulation. Toolkits are available that invite practitioners to 

start their own quantum software projects and thus get used to this novel technology. 

In this article we evaluate technologies to help developers to start their own quantum 

software business. Practical guidance is provided from our own quantum technology 

projects. I look forward to hearing from you about this column and the technologies that 

matter most for your work.—Christof Ebert
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qubit is correlated in some way with 
the first, even if the two qubits are far 
apart. Superposition and entangle-
ment are used together for quantum 

computation. Yet these effects also 
create practical challenges with real 
quantum computers: they require so-
phisticated lab environments; also, 
the information might decay when 
the state of the system is captured.

How do we deduct the result from 
these superimposed states? Many 
quantum algorithms first create 
superpositions of an exponentially 

large number of logical states. Inter-
ference is used in that the incorrect 
answers of the specific problem de-
structively interfere and no longer 

appear in the final output, leaving be-
hind only the correct answer.

From an algorithmic point of 
view, quantum computing can solve 
problems of higher complexity than 
classical computing—faster and also 
with cost and energy savings. The 
first quantum computers were built 
in the late 1990s. For practical usage, 
we distinguish quantum simulators, 

in which the quantum algorithm 
is simulated on classical hardware 
(CPUs), and real quantum comput-
ers, with quantum processing units 
(QPUs), in which qubits are built us-
ing a wide variety of technologies: 
ion-trap, superconducting, and pho-
tonic methods, among others.1,4,5

Within quantum computers we 
find mainly two categories (Fig-
ure 1): quantum annealing comput-
ers, such as the D-Wave computers 
(suitable for running optimization 
problems since finding the largest 
or smallest value of an indicator can 
translate into minimizing the energy 
of a system), or gate-based com-
puters, such as those from Google, 
IBM, Rigetti, IonQ, and Honey-
well.5 All of this strongly affects the 
way in which applications are devel-
oped. Indeed, there are also two ap-
proaches: those based on building 
binary quadratic models for solv-
ing a problem or those based on the 
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FIGURE 1. The quantum software and hardware stack.

Actual software development for 
quantum computing is hampered by 
a lack of appropriate methods and 
insufficiently scalable technology.
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construction of quantum circuits 
based on gates.

Today quantum hardware vendors 
such as IBM, Rigetti, and Google de-
liver some 100 qubits on a laboratory 
scale.4,5 This is impressive and dem-
onstrates how fast the technology is 
evolving, but it is not yet sufficient 
to run actual software applications. 
Therefore, the quantum applications 
that we envisage today are separating 
the actual hardware stack from the 
software tier (Figure 1).

We expect that quantum comput-
ers will scale up at a pace like that 
of Moore’s law. For the short term, a 
quantum network accessible by cloud 
services could show results from a 
software perspective. By connecting 
individual quantum devices, a quan-
tum supercomputer could be created. 
A bigger step forward is a quantum 
network based on entangled qubits 
for fast information exchange. Cy-
bersecurity is an obvious application 
domain of such a network to facilitate 
quantum key distribution with a cryp-
tography protocol relying on inter-
linked quantum particles.

Quantum Computing 
Applications
Applications of quantum computing 
are manifold. Because of the extreme 
parallelism of quantum algorithms, 
some massive parallel challenges, 
such as data science and pattern 
recognition, can be accelerated by 
quantum computing.

Examples include, for example, 
identifying the optimal route of a de-
livery car or fleet of trucks to save on 
time and fuel costs. Or an investment 
company may need to balance its 
portfolio risk with numerous possible 
combinations of shares with different 
individual performances and related 
cluster risks. Pharmaceutical research-
ers need to simulate molecules to better 

understand drug interactions, even if 
they do it using only known constraints 
and reported deficiencies. The latter is 
our case study in “QHealth.”

On the dark side, massive parallel 
algorithms will also facilitate hack-
ing any current cryptographic key 
with much less effort than is currently 
assumed. Shor’s algorithm can fac-
tor large prime numbers down into 
two smaller ones.6 This is a very use-
ful property for breaking encryption 
since the Rivest–Shamir–Adleman 
(RSA) system of encryption depends 

on factoring large prime numbers. 
Already today, major cybersecurity al-
gorithms are anticipating such quan-
tum hacking and vastly enhancing the 
key length. Postquantum cryptography 
has started to be researched with en-
cryption techniques that would oper-
ate and not be broken even with much 
larger quantum computers. Most of 
the encryption systems in modern 
cryptocurrencies are built on elliptic 
curve cryptography rather than RSA 
because elliptic curves are harder to 
crack than RSA—at least by classical 
computers. Current blockchain-based 
e-currencies thus use signatures that 
require the Elliptic Curve Digital Sig-
nature Algorithm (ECDSA). However, 
quantum computers seem to challenge 
ECDSA. With enough qubits, Grover’s 

algorithm can break elliptic curve cryp-
tography even more easily than you 
might break RSA.6 As Grover’s al-
gorithm also accelerates mining, one 
further application is the evolution 
in bitcoin mining from GPUs, field-
programmable gate arrays, and ap-
plication-specified integrated circuits 
toward quantum computers.

Novel quantum computation pro-
tocols are currently developed toward 
enhanced security. In such protocols, 
the client will encrypt its data so that 
the host or cloud computer cannot 

learn anything about them yet can 
still perform the calculation. After 
the computation, the client will then 
decrypt the data again to get the real 
results of the calculation. Yet another 
application is a performance boost 
in network algorithms by using en-
tangled qubits, which allows them to 
simultaneously calculate independent 
of their distance apart.1,7 The latter 
field of study is not yet mature, with 
distances only in the meter range and 
the entangling of only a few qubits, 
but the effects would be overwhelm-
ing if future networking no longer 
needed physical networks.

Given our analogy with Moore’s 
law, large enough quantum com-
puters will appear within a few 
years. Shor’s algorithm works with 

Because of the extreme parallelism 
of quantum algorithms, some 
massive parallel challenges, such 
as data science and pattern 
recognition, can be accelerated 
by quantum computing.
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a quantum computer  of fer ing 
10 –100k qubits. Using Grover’s 
algorithm for database searching 
and hacking ECDSA will require 
some 100k qubits. All this assumes 
steady growth and the mastering of 
quantum-specific challenges, such 
as the noise and error rates caused 
by the inherent quantum effect that 
observing a superimposed quantum 

state will influence its result, as de-
scribed by the Schrödinger’s cat 
thought experiment. Given the lon-
gevity of embedded computing and 
the exponential growth rate, now is 
the time to prepare our software and 
IT systems for the impacts of quan-
tum computing such as postquan-
tum cryptography.

Quantum Software 
Development
To utilize quantum computing, quan-
tum hardware vendors offer full stacks 
for the development of quantum soft-
ware. As those are typically hardware 
specific, there are also third-party sup-
pliers that provide platforms that claim 
to be hardware agnostic.

The quantum software platforms 
are portrayed in red in Figure 1. 
They offer the following functions:

• They provide users access to 
quantum computers to perform 
quantum computations via cloud 
services.

• They provide abstractions be-
tween the underlying hardware 
and the actual software appli-
cations. This includes libraries 
to facilitate using the quantum 
computer either in simulation or 
as actual hardware.

• They offer development kits 
and computational platforms to 
ramp up end-user proficiency.

• They support software engineers 
in developing and testing their 
quantum algorithms.

• They enhance the reliability and 
performance of physical quantum 
computers. An inherent weakness 
of any quantum computing sys-
tem is the errors in the transition 
from digital to quantum states. 
Random errors can occur due to 
the currently used hardware. Er-
ror-correcting software increases 
the stability and reliability of 
quantum computers.

Table 1 provides an overview of 
the currently available quantum soft-
ware technologies. Toolkits from 
hardware suppliers are typically spe-
cific to their underlying hardware. 
Manufacturers provide both local 
simulators as well as cloud resources 
to access real machines.

Building and even using a quantum 
computer involves a high investment 
because of the underlying quantum 
hardware stack. Since actual quantum 

computing hardware is much too ex-
pensive and complex, most available 
software platforms are based on cloud 
services. However, there are very few 
manufacturers capable of provid-
ing quantum services close to what is 
currently needed in terms of software 
business. Also, each manufacturer 
brings its own solutions, architectures, 
and specific hardware–software de-
pendencies. To date there are no de 
facto standards for building an ap-
propriate quantum software stack. 
In Figure 1 we have attempted to at 
least provide some abstraction levels 
between the different functional tiers.

Although there are many algo-
rithms for quantum computers, it re-
quires a good understanding of the 
underlying theory and technology to 
determine which algorithm can be 
used in a certain situation. Even if a 
suitable algorithm is transferred from 
traditional data science, its conversion 
into an executable program requires 
competence in the environment of the 
respective quantum computer, which 
data scientists and software engineers 
typically do not have.

Microsoft, IBM, and Google have 
their own respective environments, 
namely, Q#, Qiskit, and Cirq, which 
use the Python programming lan-
guage. Microsoft’s Quantum Develop-
ment Kit (QDK) delivers user-friendly 
code libraries, a debugger, and a re-
source estimator to assess how many 
qubits an algorithm will require. Each 
manufacturer provides its own access 
rules to the environments and its ver-
sions of approved languages. IBM of-
fers access to a five-qubit machine 
free of charge. More powerful ma-
chines are available in its Quantum 
Network. Microsoft offers access to 
other companies’ quantum computers 
through its Azure Quantum platform.

Two distinct development tech-
nologies are visible: quantum gates 

Building and even using a quantum 
computer involves a high investment 
because of the underlying quantum 
hardware stack.
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QHEALTH

Quantum technology can be applied to multiple questions where data science 
meets algorithmic complexity. The aim of QHealth is to improve the quality of 
life of older adults. It correlates genetic and other variables related to a per-
son’s health history. The health history is analyzed as a function of the patient’s 
drug consumption history, the reactions the older adult has experienced, and 
his/her physiological and genetic limitations.

The challenge in such an analysis involves the complexity of genetic pre-
condition on one hand and also the number of drugs being used as part of the 
normal treatments of elderly persons. Even when looking only to the impacts of 
medication, there are multiple interactions and contraindications. For each ac-
tive ingredient, in addition to variables such as genetic biomarkers, haplotypes, 
phenotypes, and so on, we must consider specific personal variables about the 
patient, such as sex, age, weight, blood pressure, recent drug history, and spe-
cific health impacts, among others. The underlying data analytics soon become 
intractable with classical computing.

QHealth builds a hybrid quantum system combining health-care applica-
tions and data analytics with quantum computing. Quantum technologies car-
ry out optimizations and simulations whose realization in classical hardware 
is not possible in acceptable timescales. This hybrid system, in combination 
with classical health applications, will give its outputs to medical professionals 
involved in prescribing drugs to elderly adults. In a further extension, we also 
envisage application in the case of younger persons with difficult drug treat-
ment and health conditions, trying to reduce the negative impacts of drugs 
due to their correlation and mutual side-effects when used in combination. 
Using the case histories and the socioeconomic and genetic variables of the 
persons being analyzed, we can then also make recommendations for suitable 
drug treatments and provide risk assessment before they are prescribed.

Using quantum technology for health care will vastly increase the possi-
bilities to assess and optimize medical treatment applications, especially for 
persons who need multiple medications for coexisting illnesses. The proposed 
approach that we currently industrialize not only improves life and medical 
treatment but also has a financial impact because it will optimize the invest-
ments that health systems make in financing drugs and address the adverse 
effects that drugs often generate.

QHealth is founded by the Center for the Development of Industrial Technol-
ogy (CDTI) of the Ministry of Science and Innovation of Spain and the European 
Regional Development Fund, in the 2020 CDTI Missions Program, with a total 
budget of several million euros. It involves a multidisciplinary team of research-
ers and technologists from the aQuantum, Gloin, and Madrija companies and 
the University Institute of Biosanitary Research of Extremadura in collaboration 
with the Pharmacogenetics and Personalized Medicine Unit, the University of 
Extremadura, and the University of Castilla-La Mancha.

and quantum annealing. Most ven-
dors offer an integrated development 
environment, but they are intended 
more as an environment for experi-
ment and executing independent 
quantum algorithms/circuits than a 
business development environment. 
Most of the toolkits also include 
some quantum software optimiza-
tion features, but usually modules 
are unconnected elements in a tradi-
tional or online file system, such as 
GitHub, or http-accessible files.

Several third-party tools can be 
connected to these toolkits, and 
high-level libraries are included. 
These libraries are sets of extensions 
to the programming language that 
encapsulate the manufacturer’s spe-
cific components in a high-level unit: 
data normalizations, circuit classes, 
gates, calculation functions and utili-
ties, error control, and many more. 
They are included because of the 
R&D and large investments of each 
manufacturer in this technology. In 
addition to these valuable resources, 
suppliers add through the Internet 
extensive repositories of information, 
code, algorithms, training materi-
als, and a long list of other types of 
resources that make access to their 
quantum technologies much easier.

Third-party software platforms, al-
though they bring quantum resources 
closer to the business world, do not yet 
provide the necessary core elements in 
the lifecycle and architecture of hy-
brid systems. While their capabilities 
and tools are good, it is necessary to 
invest time and effort in investigating 
how to fit them into a complete rigor-
ous software lifecycle, to improve the 
productivity and ensure quality quan-
tum software development. These 
development environments are hard-
ware agnostic as they are intended to 
serve as development tools for vari-
ous end-user environments. They are 
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evolving as these kinds of toolkits 
try to create, in most cases, an in-
tegrated development environment. 
Only a few of them provide optimi-
zation facilities and out-of-the-box 
(OOTB) functionality.

In our evaluation (Table 1) we re-
flect these different attributes and 
functionalities. OOTB functionality 
reflects whether the toolkit is stand-
alone or whether it needs to install 
third-party software to be able to 
produce software professionally. 

Regarding service integration, all of 
the platforms provide an application 
programming interface (API)—in 
the case of quantum gate-based com-
puters for executing quantum cir-
cuits as a service and in the case of 
quantum annealing ones for execut-
ing solvers as a service.

Challenges in Using  
Quantum Software
Designing software for quantum 
computers requires additional skills  

compared to creating software for 
traditional computers. To benefit  
from the fast pace of quantum hard-
ware evolution, it is urgent that we 
mature the technology and meth-
ods for quantum software. It is not 
enough to stress the importance of 
quantum software;1 we must go a 
step further and raise the awareness 
of quantum software engineering 
(QSE).5,7 Distinguishing different 
layers of complex systems by simula-
tion and networked smaller elements 

Table 1. Quantum software development platforms. 

Product 
Functionality D-Wave Leap–Ocean

Fujitsu Quantum-
Inspired Services Google Cirq

IBM Quantum 
Experience and 
Qiskit

Microsoft Azure 
QDK and Q# Rigetti Forest

Xanadu–
Strawberry Fields 
and Penny Lane Orquestra

Quantum 
Inspire QuantumPath

Quantum 
Programming 
Studio

Strangeworks 
QC

URL https://www.dwavesys 
.com/take-leap

https://www.fujitsu 
.com/es/services/
business-services/
digital-annealer

https://quantumai 
.google/cirq

https://quantum 
-computing.ibm 
.com

https://azure 
.microsoft.com

https://www.rigetti.com/
quantum-computing/

https://
strawberryfields 
.ai/

https://www 
.zapatacomputing 
.com/orquestra/

https://www 
.quantum 
-inspire.com/

https://www 
.quantumpath 
.es/

https://quantum 
-circuit.com/

https://
strangeworks 
.com/

Hardware 
agnosticity

NO Only D-WAVE NO 
Only Fujitsu

NO 
Only Google

NO 
Only IBM 

YES NO 
Only RIGETTI

Partially 
IBM

YES, but few 
integrated 
providers

YES, mainly 
connected with 
IBM Quantum 
Experience.

YES NO. The circuit 
is only directly 
exportable to 
Rigetti´s hardware

YES

Programming 
language

Python Platform-specific 
language

Python Python, platform-
specific language

Python QASM  
Platform-specific 
language

Q# Python Python QUIL  
Platform-specific 
language

Python Python Python 
cQASM

Python 
Q#

Multiple 
languages

Python

Integrated 
development 
environment

LEAP for executing 
quantum algorithms 

None. It depends on 
Jupyter and Python

None. It depends on 
Jupyter and Python 

QEXPERIENCE for 
executing quantum 
algorithms 

Visual Studio Code FOREST for executing 
quantum algorithms 

None  
It depends on 
Jupyter and 
Python

NO. It depends 
on Jupyter and 
Python 

Quantum 
Experience

YES YES YES

Optimization YES NO YES YES NO YES YES NO YES YES NO NO

Modularity YES if Python is used YES if Python is used YES if Python is used YES YES YES YES if Python is 
used

YES, if Python 
is used

YES, if Python 
is used

YES NO YES 

Out of the box 
functions

NO NO NO NO YES NO NO NO NO YES NO YES

Service 
integration

API for executing solvers 
as a service

API for executing 
solvers as a service

API for executing 
circuits as a service

API for executing 
circuits as a 
service

API for executing 
circuits as a 
service

API for executing 
circuits as a service

API for executing 
circuits as a 
service

NO API for 
executing 
circuits as a 
service

API for 
executing 
circuits as a 
service

PARTIAL PARTIAL

Third-party 
software

Jupyter Strangeworks 
QuantumPath

Jupyter 
Strangeworks 
QuantumPath

Jupyter 
Strangeworks 
Zapata Orquestra 
QuantumPath

Jupyter 
Strangeworks 
Zapata Orquestra 
QuantumPath

Jupyter 
Strangeworks 
Zapata Orquestra 
QuantumPath

Jupyter  
Strangeworks 
Zapata Orquestra 
QuantumPath

Jupyter 
Strangeworks

Jupyter Jupyter 
QuantumPath

Jupyter 
Visual Studio 
Java

NO NO

High-level 
libraries

YES YES YES YES YES YES YES YES YES YES YES YES

URL: uniform resource locator; QDK: Quantum Development Kit; OOTB: out of the box; API: application programming interface.
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will allow us to target innovation in 
parallel for the underlying hardware 
and software.3

Quantum software with industry-
scale performance, robustness, and 
reliability will mean a next level in 
software technology. We strongly be-
lieve that quantum computing could 
also bring a new “golden age” to 
software engineering.8 But it is nec-
essary to address all the challenges 
and opportunities faced in QSE7 and 
adapt or create the necessary models, 

standards, or methods to help us in 
the creation of new quantum systems 
and the migration of current ones.9 
One step in such advances is having 
the right development toolkits and 
knowing their characteristics.

Quantum software platforms and 
toolkits are difficult for practical in-
dustry usage. They do not bring much 
context support to the quantum algo-
rithm generation, assuming that the 
quantum software engineer will know 
how to incorporate each product to its 

corresponding platform. In the mean-
time, collections of quantum software 
algorithms are available, such as the 
quite exhaustive quantum algorithm 
zoo.6 So, to be able to work with the 
different quantum hardware, it is nec-
essary to be knowledgeable about the 
requirements and libraries of each one  
of them.

Where Do We Go From Here?
Software and system technology in-
novation will further evolve at a fast 

Table 1. Quantum software development platforms. 

Product 
Functionality D-Wave Leap–Ocean

Fujitsu Quantum-
Inspired Services Google Cirq

IBM Quantum 
Experience and 
Qiskit

Microsoft Azure 
QDK and Q# Rigetti Forest

Xanadu–
Strawberry Fields 
and Penny Lane Orquestra

Quantum 
Inspire QuantumPath

Quantum 
Programming 
Studio

Strangeworks 
QC

URL https://www.dwavesys 
.com/take-leap

https://www.fujitsu 
.com/es/services/
business-services/
digital-annealer

https://quantumai 
.google/cirq

https://quantum 
-computing.ibm 
.com

https://azure 
.microsoft.com

https://www.rigetti.com/
quantum-computing/

https://
strawberryfields 
.ai/

https://www 
.zapatacomputing 
.com/orquestra/

https://www 
.quantum 
-inspire.com/

https://www 
.quantumpath 
.es/

https://quantum 
-circuit.com/

https://
strangeworks 
.com/

Hardware 
agnosticity

NO Only D-WAVE NO 
Only Fujitsu

NO 
Only Google

NO 
Only IBM 

YES NO 
Only RIGETTI

Partially 
IBM

YES, but few 
integrated 
providers

YES, mainly 
connected with 
IBM Quantum 
Experience.

YES NO. The circuit 
is only directly 
exportable to 
Rigetti´s hardware

YES

Programming 
language

Python Platform-specific 
language

Python Python, platform-
specific language

Python QASM  
Platform-specific 
language

Q# Python Python QUIL  
Platform-specific 
language

Python Python Python 
cQASM

Python 
Q#

Multiple 
languages

Python

Integrated 
development 
environment

LEAP for executing 
quantum algorithms 

None. It depends on 
Jupyter and Python

None. It depends on 
Jupyter and Python 

QEXPERIENCE for 
executing quantum 
algorithms 

Visual Studio Code FOREST for executing 
quantum algorithms 

None  
It depends on 
Jupyter and 
Python

NO. It depends 
on Jupyter and 
Python 

Quantum 
Experience

YES YES YES

Optimization YES NO YES YES NO YES YES NO YES YES NO NO

Modularity YES if Python is used YES if Python is used YES if Python is used YES YES YES YES if Python is 
used

YES, if Python 
is used

YES, if Python 
is used

YES NO YES 

Out of the box 
functions

NO NO NO NO YES NO NO NO NO YES NO YES

Service 
integration

API for executing solvers 
as a service

API for executing 
solvers as a service

API for executing 
circuits as a service

API for executing 
circuits as a 
service

API for executing 
circuits as a 
service

API for executing 
circuits as a service

API for executing 
circuits as a 
service

NO API for 
executing 
circuits as a 
service

API for 
executing 
circuits as a 
service

PARTIAL PARTIAL

Third-party 
software

Jupyter Strangeworks 
QuantumPath

Jupyter 
Strangeworks 
QuantumPath

Jupyter 
Strangeworks 
Zapata Orquestra 
QuantumPath

Jupyter 
Strangeworks 
Zapata Orquestra 
QuantumPath

Jupyter 
Strangeworks 
Zapata Orquestra 
QuantumPath

Jupyter  
Strangeworks 
Zapata Orquestra 
QuantumPath

Jupyter 
Strangeworks

Jupyter Jupyter 
QuantumPath

Jupyter 
Visual Studio 
Java

NO NO

High-level 
libraries

YES YES YES YES YES YES YES YES YES YES YES YES

URL: uniform resource locator; QDK: Quantum Development Kit; OOTB: out of the box; API: application programming interface.
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pace in fields such as nanotechnol-
ogy, biotechnology, genomics, and 
quantum computing.3 Today we can 
already use quantum computers and 
profit from their huge computation 
capacity to solve problems consid-
ered very difficult or unaffordable 
for “classic” computing. Quantum 
computing speeds up the process of 
solving algorithms that require mas-
sive parallel computations and so al-
lows us to better simulate nature. All 
of this brings very new, disruptive, 
and potentially useful innovations.

Our focus here is on quantum 
software platforms to get started in 

industry-scale software engineer-
ing. Quantum hardware suppliers 
have provided software technologies 
for their respective computers and 
quantum effect simulators. Results 
look promising as there are several 
platforms available which allow a 
smooth learning curve.

The state of quantum technology is 
improving at an accelerating rate. To 
produce useful and trusted quantum 
software, applications still must solve 
relevant issues, such as the resolution 
of qubits and the control of their er-
rors. The results of quantum ma-
chines create new types of errors, and 

we must learn to interpret the results. 
However, each vendor provides the 
results in different ways, which again 
leads to the need to rely on a particu-
lar vendor or to build a homogenized 
channel to consolidate the results.

The importance of professional 
software engineering for quantum 
computing has been neglected so 
far.7–9 New software engineering 
methods must be conceived based 
on experiences from software engi-
neering for data science and machine 
learning.3,9 They must be enhanced 
to manage specific quantum chal-
lenges, such as uncertainties, noise, 
and interpretation. Along those 
lines, development tools are not yet 
suitable from a business point of 
view. The resources resulting from 
the use of vendor software develop-
ment kits are individual elements 
that are not yet incorporated into en-
terprise development resources.

Software technology and devel-
opment methodologies need to ad-
vance to make these assets part of a 
complete quantum software project 
lifecycle. The increasing awareness 
of quantum computing applications 
demands the production of quality 
quantum software. Without proper 
software technology platforms and 
suitable software engineering meth-
ods, quantum software remains a 
mere research topic. Especially in 
trusted environments, such as med-
icine, and others where defects will 
have severe consequences, quantum 
software must prove the same high-
quality standards that we demand 
from any other software.

Physics Nobel laureate and 
quantum pioneer Niels Bohr 
once remarked: “Those 

who are not shocked when they first 
come across quantum theory cannot 
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possibly have understood it.” His 
observation still applies today, espe-
cially in using quantum effects to ac-
tually produce software. There is still 
a way to go to deliver quality quan-
tum applications. Yet now is the time 
to start. To scale from research to in-
dustry, quantum software must adopt 
sound software engineering methods 
for the development of quantum soft-
ware—and enhance them as we once 
did when scaling agile development. 
Good enough may be sufficient for 
today, but it is certainly not for to-
morrow. 
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